Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.334
Filtrar
1.
Plant Cell Rep ; 43(4): 92, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466441

RESUMO

KEY MESSAGE: Pepper fruits contain two leucine aminopeptidase (LAP) genes which are differentially modulated during ripening and by nitric oxide. The LAP activity increases during ripening but is negatively modulated by nitration. Leucine aminopeptidase (LAP) is an essential metalloenzyme that cleaves N-terminal leucine residues from proteins but also metabolizes dipeptides and tripeptides. LAPs play a fundamental role in cell protein turnover and participate in physiological processes such as defense mechanisms against biotic and abiotic stresses, but little is known about their involvement in fruit physiology. This study aims to identify and characterize genes encoding LAP and evaluate their role during the ripening of pepper (Capsicum annuum L.) fruits and under a nitric oxide (NO)-enriched environment. Using a data-mining approach of the pepper plant genome and fruit transcriptome (RNA-seq), two LAP genes, designated CaLAP1 and CaLAP2, were identified. The time course expression analysis of these genes during different fruit ripening stages showed that whereas CaLAP1 decreased, CaLAP2 was upregulated. However, under an exogenous NO treatment of fruits, both genes were downregulated. On the contrary, it was shown that during fruit ripening LAP activity increased by 81%. An in vitro assay of the LAP activity in the presence of different modulating compounds including peroxynitrite (ONOO-), NO donors (S-nitrosoglutathione and nitrosocyteine), reducing agents such as reduced glutathione (GSH), L-cysteine (L-Cys), and cyanide triggered a differential response. Thus, peroxynitrite and reducing compounds provoked around 50% inhibition of the LAP activity in green immature fruits, whereas cyanide upregulated it 1.5 folds. To our knowledge, this is the first characterization of LAP in pepper fruits as well as of its regulation by diverse modulating compounds. Based on the capacity of LAP to metabolize dipeptides and tripeptides, it could be hypothesized that the LAP might be involved in the GSH recycling during the ripening process.


Assuntos
Capsicum , Óxido Nítrico , Óxido Nítrico/metabolismo , Frutas/metabolismo , Capsicum/genética , Capsicum/metabolismo , Leucina/metabolismo , Leucil Aminopeptidase/genética , Leucil Aminopeptidase/metabolismo , Ácido Peroxinitroso/metabolismo , Cianetos/metabolismo , Dipeptídeos/metabolismo
2.
Biochemistry ; 62(22): 3188-3205, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37924287

RESUMO

Intracellular leucine aminopeptidases (PepA) are metalloproteases from the family M17. These enzymes catalyze peptide bond cleavage, removing N-terminal residues from peptide and protein substrates, with consequences for protein homeostasis and quality control. While general mechanistic studies using model substrates have been conducted on PepA enzymes from various organisms, specific information about their substrate preferences and promiscuity, choice of metal, activation mechanisms, and the steps that limit steady-state turnover remain unexplored. Here, we dissected the catalytic and chemical mechanisms of PaPepA: a leucine aminopeptidase from Pseudomonas aeruginosa. Cleavage assays using peptides and small-molecule substrate mimics allowed us to propose a mechanism for catalysis. Steady-state and pre-steady-state kinetics, pH rate profiles, solvent kinetic isotope effects, and biophysical techniques were used to evaluate metal binding and activation. This revealed that metal binding to a tight affinity site is insufficient for enzyme activity; binding to a weaker affinity site is essential for catalysis. Progress curves for peptide hydrolysis and crystal structures of free and inhibitor-bound PaPepA revealed that PaPepA cleaves peptide substrates in a processive manner. We propose three distinct modes for activity regulation: tight packing of PaPepA in a hexameric assembly controls substrate length and reaction processivity; the product leucine acts as an inhibitor, and the high concentration of metal ions required for activation limits catalytic turnover. Our work uncovers catalysis by a metalloaminopeptidase, revealing the intricacies of metal activation and substrate selection. This will pave the way for a deeper understanding of metalloenzymes and processive peptidases/proteases.


Assuntos
Leucil Aminopeptidase , Peptídeos , Leucina/metabolismo , Leucil Aminopeptidase/química , Leucil Aminopeptidase/metabolismo , Peptídeos/metabolismo , Hidrólise , Metais/metabolismo , Catálise , Cinética , Especificidade por Substrato
3.
Anal Chem ; 95(32): 12089-12096, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37525359

RESUMO

Traditional molecular imaging tools used for detecting liver diseases own several drawbacks, such as poor optical performance and limited applicability. Monitoring the concentration of leucine aminopeptidase (LAP), which is closely related to liver diseases such as liver cancer and liver injury, and analyzing it in diagnosis, drug evaluation, and surgical treatment is still a challenging task. Herein, we construct an intramolecular charge-transfer mechanism-based, ultrasensitive, near-infrared fluorescent probe (LAN-lap) for dynamic monitoring of LAP fluctuations in living systems. LAN-lap, with high specificity, stability, sensitivity, and water solubility, can achieve in vitro monitoring of LAP through both fluorescence and colorimetric methods. Moreover, LAN-lap can successfully be used for the localization imaging of endogenous LAP, confirming the upregulation of LAP expression in liver cancer and liver injury cells. In addition, LAN-lap can realize the imaging of liver tumors in living organisms. Meanwhile, it can intuitively present the degree of drug-induced liver injury, achieving semi-quantitative imaging evaluation of the hepatotoxicity of two drugs. Furthermore, LAN-lap can track liver cancer tumors in mice with peritoneal metastasis and can assist in fluorescence-guided surgical resection of liver cancer tumors. This multifunctional LAN-lap probe could play an important role in facilitating simultaneous diagnoses, imaging, and synergistic surgical navigation to achieve better point-of-care therapeutic efficacy.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Neoplasias Hepáticas , Animais , Camundongos , Leucil Aminopeptidase/metabolismo , Avaliação de Medicamentos , Corantes Fluorescentes , Neoplasias Hepáticas/diagnóstico por imagem , Imagem Molecular
4.
Fish Physiol Biochem ; 49(5): 867-882, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37530924

RESUMO

Knowledge of the developmental ontogeny of the digestive system and nutritional requirements of marine fish larvae is a primary requisite for their successful rearing under an optimal feeding regime. In this context, we assessed the activity profile of key digestive enzymes viz., trypsin, chymotrypsin, leucine aminopeptidase, lipase, amylase, and alkaline phosphatase during the early ontogeny of milkfish, Chanos chanos (0 day, 3 days, 6 days, 9 days, 12 days, 15 days, 18 days, 21 days, 25 days, and 30 days post-hatch). Larvae for this study were obtained from the successful breeding of milkfish at ICAR-Central Institute of Brackishwater Aquaculture, India. Growth curves (length and weight) of the larvae indicated a positive morphological development under a standardized feeding regime that comprised Chlorella salina, Brachionus plicatilis, Artemia salina nauplii, and commercial weaning feed for different larval stages. With respect to protein digestion, the specific activity of pancreatic enzymes trypsin and chymotrypsin and intestinal brush border leucine aminopeptidase showed two peaks at 3 dph and 15 dph, following the introduction of rotifer and Artemia nauplii. Similar bimodal peaks were observed for alkaline phosphatase and amylase activities, with the first peak at 3 dph and the second peak at 18 dph and 21 dph, respectively. Whereas in the case of lipase, high activity levels were observed at 0 dph, 3 dph, and 18 dph, with subsequent decreases and fluctuations. Overall, as most of the enzymes were found to have peak activities at 15 to 21 dph, this period can be potentially considered as the developmental window for weaning larvae from live to formulated feeds in milkfish hatcheries.


Assuntos
Chlorella , Rotíferos , Animais , Larva , Quimotripsina/metabolismo , Tripsina/metabolismo , Fosfatase Alcalina/metabolismo , Leucil Aminopeptidase/metabolismo , Chlorella/metabolismo , Melhoramento Vegetal , Peixes/metabolismo , Amilases/metabolismo , Lipase/metabolismo
5.
J Cell Physiol ; 238(9): 2103-2119, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37435895

RESUMO

Skeletal muscle maintenance depends largely on muscle stem cells (satellite cells) that supply myoblasts required for muscle regeneration and growth. The ubiquitin-proteasome system is the major intracellular protein degradation pathway. We previously reported that proteasome dysfunction in skeletal muscle significantly impairs muscle growth and development. Furthermore, the inhibition of aminopeptidase, a proteolytic enzyme that removes amino acids from the termini of peptides derived from proteasomal proteolysis, impairs the proliferation and differentiation ability of C2C12 myoblasts. However, no evidence has been reported on the role of aminopeptidases with different substrate specificities on myogenesis. In this study, therefore, we investigated whether the knockdown of aminopeptidases in differentiating C2C12 myoblasts affects myogenesis. The knockdown of the X-prolyl aminopeptidase 1, aspartyl aminopeptidase, leucyl-cystinyl aminopeptidase, methionyl aminopeptidase 1, methionyl aminopeptidase 2, puromycine-sensitive aminopeptidase, and arginyl aminopeptidase like 1 gene in C2C12 myoblasts resulted in defective myogenic differentiation. Surprisingly, the knockdown of leucine aminopeptidase 3 (LAP3) in C2C12 myoblasts promoted myogenic differentiation. We also found that suppression of LAP3 expression in C2C12 myoblasts resulted in the inhibition of proteasomal proteolysis, decreased intracellular branched-chain amino acid levels, and enhanced mTORC2-mediated AKT phosphorylation (S473). Furthermore, phosphorylated AKT induced the translocation of TFE3 from the nucleus to the cytoplasm, promoting myogenic differentiation through increased expression of myogenin. Overall, our study highlights the association of aminopeptidases with myogenic differentiation.


Assuntos
Leucil Aminopeptidase , Desenvolvimento Muscular , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-akt , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Metionil Aminopeptidases/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Camundongos , Leucil Aminopeptidase/metabolismo
6.
Cell Rep ; 42(4): 112317, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36995940

RESUMO

The endoplasmic reticulum aminopeptidase associated with antigen processing (ERAAP) plays a crucial role in shaping the peptide-major histocompatibility complex (MHC) class I repertoire and maintaining immune surveillance. While murine cytomegalovirus (MCMV) has multiple strategies for manipulating the antigen processing pathway to evade immune responses, the host has also developed ways to counter viral immune evasion. In this study, we find that MCMV modulates ERAAP and induces an interferon γ (IFN-γ)-producing CD8+ T cell effector response that targets uninfected ERAAP-deficient cells. We observe that ERAAP downregulation during infection leads to the presentation of the self-peptide FL9 on non-classical Qa-1b, thereby eliciting Qa-1b-restricted QFL T cells to proliferate in the liver and spleen of infected mice. QFL T cells upregulate effector markers upon MCMV infection and are sufficient to reduce viral load after transfer to immunodeficient mice. Our study highlights the consequences of ERAAP dysfunction during viral infection and provides potential targets for anti-viral therapies.


Assuntos
Apresentação de Antígeno , Muromegalovirus , Animais , Camundongos , Aminopeptidases/metabolismo , Linfócitos T CD8-Positivos , Retículo Endoplasmático/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Leucil Aminopeptidase/metabolismo , Peptídeos/metabolismo
7.
Food Res Int ; 161: 111491, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192866

RESUMO

Ethylene plays a crucial role in regulating fruit ripening, quality, and defense response. However, the mechanism(s) responsible for wound-induced ethylene regulation of fruit physiology at a network level is unclear. We used mass spectrometry (MS) to identify differences in the physiological response between fresh-cut fruits of wild-type (WT) tomato and an ethylene receptor mutant (SlETR-3) (also referred to as Nr) during storage. We found that Nr mutants exhibited better appearance and quality, as well as higher ethylene levels during the first 3 d of storage at 4 °C. Thirty-seven (0 h), eighty-two (12 h) and twelve (24 h) differentially abundant proteins were identified between the fresh-cut slices of the two genotypes during storage at the designated timepoints. In particular, antioxidant enzymes, such as ascorbate peroxidase, glutathione S-transferase, and peroxiredoxin were highly expressed in WT fruit, which was associated with higher H2O2 production, and high levels of transcription of cell-wall degrading enzymes. Leucine aminopeptidase, a marker enzyme for response to wounding exhibited higher levels in the Nr mutant, which is consistent with its higher production of ethylene. Collectively, our results provide a deeper insight into the ethylene-induced physiological regulatory network that is activated in fresh-cut tomatoes.


Assuntos
Solanum lycopersicum , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Etilenos/farmacologia , Glutationa Transferase/metabolismo , Peróxido de Hidrogênio/metabolismo , Leucil Aminopeptidase/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Peroxirredoxinas/metabolismo , Proteômica
8.
Appl Microbiol Biotechnol ; 106(19-20): 6847-6859, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36121483

RESUMO

Surfactants are used to control microbial biofilms in industrial and medical settings. Their known toxicity on aquatic biota, and their longevity in the environment, has encouraged research on biodegradable alternatives such as rhamnolipids. While previous research has investigated the effects of biological surfactants on single species biofilms, there remains a lack of information regarding the effects of synthetic and biological surfactants in freshwater ecosystems. We conducted a mesocosm experiment to test how the surfactant sodium dodecyl sulfate (SDS) and the biological surfactant rhamnolipid altered community composition and metabolic activity of freshwater biofilms. Biofilms were cultured in the flumes using lake water from Lake Lunz in Austria, under high (300 ppm) and low (150 ppm) concentrations of either surfactant over a four-week period. Our results show that both surfactants significantly affected microbial diversity. Up to 36% of microbial operational taxonomic units were lost after surfactant exposure. Rhamnolipid exposure also increased the production of the extracellular enzymes, leucine aminopeptidase, and glucosidase, while SDS exposure reduced leucine aminopeptidase and glucosidase. This study demonstrates that exposure of freshwater biofilms to chemical and biological surfactants caused a reduction of microbial diversity and changes in biofilm metabolism, exemplified by shifts in extracellular enzyme activities. KEY POINTS: • Microbial biofilm diversity decreased significantly after surfactant exposure. • Exposure to either surfactant altered extracellular enzyme activity. • Overall metabolic activity was not altered, suggesting functional redundancy.


Assuntos
Leucil Aminopeptidase , Tensoativos , Biofilmes , Ecossistema , Água Doce/química , Glucosidases/farmacologia , Leucil Aminopeptidase/metabolismo , Leucil Aminopeptidase/farmacologia , Dodecilsulfato de Sódio , Tensoativos/farmacologia , Água/farmacologia
9.
BMC Cancer ; 22(1): 864, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941558

RESUMO

BACKGROUND: IFN-γ has been traditionally recognized as an inflammatory cytokine that involves in inflammation and autoimmune diseases. Previously we have shown that sustained IFN-γ induced malignant transformation of bovine mammary epithelial cells (BMECs) via arginine depletion. However, the molecular mechanism underlying this is still unknown. METHODS: In this study, the amino acids contents in BMECs were quantified by a targeted metabolomics method. The acquisition of differentially expressed genes was mined from RNA-seq dataset and analyzed bioinformatically. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), western blotting, and immunohistochemistry (IHC) assay were performed to detect gene mRNA and protein expression levels. CCK-8 and would healing assays were used to detect cell proliferation and migration abilities, respectively. Cell cycle phase alternations were analyzed by flow cytometry. RESULTS: The targeted metabolomics analysis specifically discovered IFN-γ induced arginine depletion through accelerating arginine catabolism and inhibiting arginine anabolism in BMECs. Transcriptome analysis identified leucine aminopeptidase 3 (LAP3), which was regulated by p38 and ERK MAPKs, to downregulate arginine level through interfering with argininosuccinate synthetase (ASS1) as IFN-γ stimulated. Moreover, LAP3 also contributed to IFN-γ-induced malignant transformation of BMECs by upregulation of HDAC2 (histone deacetylase 2) expression and promotion of cell cycle proteins cyclin A1 and D1 expressions. Arginine supplementation did not affect LAP3 and HDAC2 expressions, but slowed down cell cycle process of malignant BMECs. In clinical samples of patients with breast cancer, LAP3 was confirmed to be upregulated, while ASS1 was downregulated compared with healthy control. CONCLUSIONS: These results demonstrated that LAP3 mediated IFN-γ-induced arginine depletion to malignant transformation of BMECs. Our findings provide a potential therapeutic target for breast cancer both in humans and dairy cows.


Assuntos
Arginina , Neoplasias da Mama , Leucil Aminopeptidase/metabolismo , Animais , Arginina/metabolismo , Argininossuccinato Sintase/metabolismo , Mama/metabolismo , Neoplasias da Mama/metabolismo , Bovinos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Interferon gama/metabolismo
10.
ACS Appl Mater Interfaces ; 13(50): 59787-59802, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34894664

RESUMO

Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs in vivo. Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a leucine amino peptidase (LAP) and glutathione (GSH) dual-responsive moiety, an 1,2-aminothiol group, and a clinically used photosensitizer Ce6. This probe tends to self-assemble into uniform nanoparticles with an initial size of ∼80 nm in aqueous solution owing to the amphiphilic feature. Surprisingly, taking advantage of the biocompatible CBT-Cys condensation reaction, the large nanoprobes can be transformed into tiny nanoparticles (∼23 nm) under the joint action of LAP and GSH in a tumor microenvironment, endowing them with great tumor accumulation and deep tissue penetration. Concomitantly, this LAP/GSH-driven disassembly and size shrinkage of Ce6-Leu can also activate the fluorescence/magnetic resonance signals and the photodynamic effect for enhanced multimodal imaging-guided photodynamic therapy of human liver HepG2 tumors in vivo. More excitingly, the Mn2+-chelating probe (Ce6-Leu@Mn2+) was demonstrated to have the capability to catalyze endogenous H2O2 to persistently release O2 at the hypoxic tumor site, as a consequence improving the oxygen supply to boost the radiotherapy effect. We thus believe that this LAP/GSH-driven size-transformable nanosystem would offer a novel advanced technology to improve the drug delivery efficiency for achieving precise tumor diagnosis and treatment.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Glutationa/metabolismo , Leucil Aminopeptidase/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Nanomedicina Teranóstica , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clorofilídeos/química , Clorofilídeos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Teste de Materiais , Estrutura Molecular , Imagem Óptica , Tamanho da Partícula , Fármacos Fotossensibilizantes/química
11.
J Mater Chem B ; 9(42): 8842-8850, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34647119

RESUMO

Leucine aminopeptidase (LAP) is a vital proteolytic enzyme, and its overexpression is often associated with many physiological diseases, such as liver dysfunction and breast cancer. Therefore, the accurate measurement of LAP concentrations in cells is critical for the diagnosis and prevention of related diseases. Herein, a new ratiometric fluorescent probe, DPP-Leu, based on diketopyrrolopyrrole (DPP) was designed and synthesized for LAP detection based on the specific enzymatic cleavage of the N-terminal leucine residue. The fluorescence intensity ratio of DPP-Leu (I548/I651) showed a remarkable change in the presence of LAP, with a limit of detection of 0.011 U L-1, and DPP-Leu was successfully applied to detect LAP in fetal bovine serum (FBS) and artificial urine. Cell imaging experiments revealed that DPP-Leu could target mitochondria and distinguish tumor cells with high LAP content from normal cells. Importantly, benefiting from the structural transformation of DPP-Leu to the photosensitizer 4 under LAP catalysis, the probe could kill tumor cells under light irradiation without damaging normal cells.


Assuntos
Antineoplásicos/farmacologia , Corantes Fluorescentes/farmacologia , Cetonas/farmacologia , Leucil Aminopeptidase/análise , Imagem Óptica , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio , Cetonas/síntese química , Cetonas/química , Leucil Aminopeptidase/metabolismo , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Pirróis/síntese química , Pirróis/química , Espécies Reativas de Oxigênio/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-34461292

RESUMO

Cadmium (Cd) presence in terrestrial ecosystems is a serious threat that requires continuous development of biomonitoring tools. Ideally, a suitable biomarker of exposure should respond to the toxicant consistently in different populations regardless of previous exposure to pollution. Here we considered the activities and isoform patterns of certain proteases and acid phosphatases (ACP) in the midgut of Lymantria dispar larvae as well as the integrated biomarker response (IBR) for application in Cd biomonitoring. We compared the responses of caterpillars originating from unpolluted and polluted localities after they had been chronically subjected to dietary Cd (50 and 100 µg Cd/g dry food). The population inhabiting the unpolluted forest was far more sensitive to Cd exposure as the activities of total proteases, trypsin (TRY) and leucine aminopeptidase (LAP) were mostly reduced while the activities of total and non-lysosomal ACP were increased. Non-lysosomal ACP activity was elevated in larvae from the contaminated site in response to the higher Cd concentration. Exposure to the metal resulted in numerous alterations in the pattern of enzyme isoforms, but the responses of the two populations were similar except that larvae from the polluted locality were more tolerant to the lower Cd concentration. Non-lysosomal ACP activity and the appearance of ACP isoforms 4 and 5 together with the IBR index are the most promising indicators of Cd presence, potentially applicable even in populations with a history of exposure to pollution. TRY and total ACP activities could be used to monitor populations at uncontaminated localities.


Assuntos
Cádmio/toxicidade , Mariposas/efeitos dos fármacos , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Animais , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/enzimologia , Poluentes Ambientais/toxicidade , Larva , Leucil Aminopeptidase/genética , Leucil Aminopeptidase/metabolismo , Mariposas/embriologia , Tripsina/genética , Tripsina/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-34174428

RESUMO

This study was carried out to profile key characteristics of intestinal functions and health in wild-caught Ballan wrasse. To describe functional variation along the intestine, samples were collected from four intestinal segments, named from the proximal to the distal segment: IN1, IN2, IN3 and IN4. The sections showed quite similar structure, i.e. regarding mucosal fold height and branching, lamina propria and submucosal width and cellular composition and thickness of the muscle layers. Leucine aminopeptidase and maltase capacity decreased from IN1 to IN4, suggesting a predominant role of IN1 in digestion. Gene expression levels of vitamin C transporter (slc23a1) and fatty acid transporters (cd36 and fabp2) were higher in IN1 than in IN4, indicating a more important role of the proximal intestine regarding transport of vitamins and fatty acids. Higher expression of the gene coding for IgM heavy chain constant region (ighm) was found in IN4 than in IN1, suggesting an important immune function of the distal intestine. Other immune related genes il1b, il6, cd40, showed similar expression in the proximal and the distal part of the intestine. Parasite infection, especially the myxozoan parasite Enteromyxum leei, coincided with infiltration of lymphocytic and eosinophilic granular cells in the submucosa and lamina propria. The present study established reference information necessary for interpretation of results of studies of intestinal functions and health in cultured Ballan wrasse.


Assuntos
Digestão/fisiologia , Perfilação da Expressão Gênica , Imunidade/fisiologia , Intestinos/metabolismo , Perciformes/fisiologia , Animais , Biomarcadores/metabolismo , Colesterol/metabolismo , Feminino , Doenças dos Peixes , Regulação da Expressão Gênica , Hidrólise , Sistema Imunitário , Imunoglobulina M/metabolismo , Leucil Aminopeptidase/metabolismo , Masculino , Mucosa/metabolismo , Noruega , alfa-Glucosidases/metabolismo
14.
Chem Commun (Camb) ; 57(54): 6608-6611, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34114574

RESUMO

We report a rational strategy to deliberately construct the first asymmetric tetraarylimidazole-based AIE probe, integrating AIE behavior in synergy with ESIPT character to image endogenous LAP for the first time. It offered good sensitivity and selectivity, and concomitantly, was applied successfully for real-time tracking of LAP in the cisplatin-induced liver injury zebrafish model.


Assuntos
Imidazóis/química , Leucil Aminopeptidase/metabolismo , Animais , Leucil Aminopeptidase/química , Fígado/metabolismo , Sondas Moleculares/química , Peixe-Zebra
15.
J Struct Biol ; 213(3): 107741, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33989771

RESUMO

Leucyl aminopeptidase A from Aspergillus oryzae RIB40 (AO-LapA) is an exo-acting peptidase, widely utilised in food debittering applications. AO-LapA is secreted as a zymogen by the host and requires enzymatic cleavage of the autoinhibitory propeptide to reveal its full activity. Scarcity of structural data of zymogen aminopeptidases hampers a better understanding of the details of their molecular action of autoinhibition and how this might be utilised to improve the properties of such enzymes by recombinant methods for more effective bioprocessing. To address this gap in the literature, herein we report high-resolution crystal structures of recombinantly expressed AO-LapA precursor (AO-proLapA), mature LapA (AO-mLapA) and AO-mLapA complexed with reaction product l-leucine (AO-mLapA-Leu), all purified from Pichia pastoris culture supernatant. Our structures reveal a plausible molecular mechanism of LapA catalytic domain autoinhibition by propeptide and highlights the role of intramolecular chaperone (IMC). Our data suggest an absolute requirement for IMC in the maturation of cognate catalytic domain of AO-LapA. This observation is reinforced by our expression and refolding data of catalytic domain only (AO-refLapA) from Escherichia coli inclusion bodies, revealing a limited active conformation. Our work supports the notion that known synthetic aminopeptidase inhibitors and substrates mimic key polar contacts between propeptide and corresponding catalytic domain, demonstrated in our AO-proLapA zymogen crystal structure. Furthermore, understanding the atomic details of the autoinhibitory mechanism of cognate catalytic domains by native propeptides has wider reaching implications toward synthetic production of more effective inhibitors of bimetallic aminopeptidases and other dizinc enzymes that share an analogous reaction mechanism.


Assuntos
Leucil Aminopeptidase , Chaperonas Moleculares , Aminopeptidases/genética , Aminopeptidases/metabolismo , Domínio Catalítico , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Leucil Aminopeptidase/química , Leucil Aminopeptidase/metabolismo , Chaperonas Moleculares/metabolismo
16.
Cancer Genomics Proteomics ; 18(3): 307-316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33893083

RESUMO

BACKGROUND/AIM: Cancer is the most fatal disease worldwide whose most lethal characteristics are invasion and metastasis. Hepatocellular carcinoma (HCC) is one of the most fatal cancers worldwide. HCC often shows encapsulation, which is related to better prognosis. In this study, proteomic analysis of HCC tissues with and without encapsulation was performed, in order to elucidate the factors which play important roles in encapsulation. MATERIALS AND METHODS: Five HCC tissues surrounded by a capsule and five HCC tissues which broke the capsule were obtained from patients diagnosed with HCC who underwent surgical liver resection. Protein samples from these tissues were separated by two-dimensional gel electrophoresis (2-DE), and the protein spots whose expression was different between encapsulated and non-encapsulated HCC tissues were identified through gel imaging analysis software. The selected protein spots were analyzed and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: Two-DE analysis showed 14 spots whose expression was different between encapsulated and non-encapsulated HCC tissues. Of these, 9 were up-regulated and 5 were down-regulated in HCC tissues without encapsulation. The validation by Western blot confirmed that leucine aminopeptidase 3 (LAP3) and phosphoenolpyruvate carboxykinase mitochondrial (PCK2) were up-regulated significantly in HCC tissues with a capsule, compared to HCC tissues that broke the capsule. CONCLUSION: These findings suggest that LAP3 and PCK2 could be factors responsible for the maintenance of encapsulation in HCC tissues.


Assuntos
Carcinoma Hepatocelular/metabolismo , Leucil Aminopeptidase/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Feminino , Humanos , Leucil Aminopeptidase/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Prognóstico , Proteômica , Regulação para Cima
18.
BMC Plant Biol ; 21(1): 69, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526024

RESUMO

BACKGROUND: Durian (Durio zibethinus L.) is a highly popular fruit in Thailand and several other Southeast Asian countries. It is abundant in essential nutrients and sulphur-containing compounds such as glutathione (GSH) and γ-glutamylcysteine (γ-EC). Cysteinylglycine (Cys-Gly) is produced by GSH catabolism and occurs in durian fruit pulp. Cysteine (Cys) is a precursor of sulphur-containing volatiles generated during fruit ripening. The aforementioned substances contribute to the strong odour and flavour of the ripe fruit. However, the genes encoding plant Cys-Gly dipeptidases are unknown. The aim of this study was to measure leucylaminopeptidase (LAP) activity in durian fruit pulp. RESULTS: We identified DzLAP1 and DzLAP2, which the former was highly expressed in the fruit pulp. DzLAP1 was expressed at various ripening stages and in response to ethephon/1-MCP treatment. Hence, DzLAP1 is active at the early stages of fruit ripening. DzLAP1 is a metalloenzyme ~ 63 kDa in size. It is activated by Mg2+ or Mn2+ and, like other LAPs, its optimal alkaline pH is 9.5. Kinetic studies revealed that DzLAP1 has Km = 1.62 mM for its preferred substrate Cys-Gly. DzLAP1-GFP was localised to the cytosol and targeted the plastids. In planta Cys-Gly hydrolysis was confirmed for Nicotiana benthamiana leaves co-infiltrated with Cys-Gly and expressing DzLAP1. CONCLUSIONS: DzLAP1 has Cys-Gly dipeptidase activity in the γ-glutamyl cycle. The present study revealed that the LAPs account for the high sulphur-containing compound levels identified in fully ripened durian fruit pulp.


Assuntos
Bombacaceae/enzimologia , Bombacaceae/crescimento & desenvolvimento , Dipeptidases/metabolismo , Frutas/enzimologia , Frutas/crescimento & desenvolvimento , Glutationa/metabolismo , Leucil Aminopeptidase/metabolismo , Sequência de Bases , Bombacaceae/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Filogenia , Proteínas de Plantas/metabolismo , Frações Subcelulares/metabolismo , /metabolismo
19.
Sci Rep ; 11(1): 2854, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536500

RESUMO

The Plasmodium falciparum M1 alanyl aminopeptidase and M17 leucyl aminopeptidase, PfM1AAP and PfM17LAP, are potential targets for novel anti-malarial drug development. Inhibitors of these aminopeptidases have been shown to kill malaria parasites in culture and reduce parasite growth in murine models. The two enzymes may function in the terminal stages of haemoglobin digestion, providing free amino acids for protein synthesis by the rapidly growing intra-erythrocytic parasites. Here we have performed a comparative cellular and biochemical characterisation of the two enzymes. Cell fractionation and immunolocalisation studies reveal that both enzymes are associated with the soluble cytosolic fraction of the parasite, with no evidence that they are present within other compartments, such as the digestive vacuole (DV). Enzyme kinetic studies show that the optimal pH of both enzymes is in the neutral range (pH 7.0-8.0), although PfM1AAP also possesses some activity (< 20%) at the lower pH range of 5.0-5.5. The data supports the proposal that PfM1AAP and PfM17LAP function in the cytoplasm of the parasite, likely in the degradation of haemoglobin-derived peptides generated in the DV and transported to the cytosol.


Assuntos
Antígenos CD13/metabolismo , Leucil Aminopeptidase/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antígenos CD13/antagonistas & inibidores , Antígenos CD13/química , Antígenos CD13/isolamento & purificação , Fracionamento Celular , Células Cultivadas , Citosol/enzimologia , Desenvolvimento de Medicamentos , Ensaios Enzimáticos , Eritrócitos/parasitologia , Humanos , Concentração de Íons de Hidrogênio , Leucil Aminopeptidase/antagonistas & inibidores , Leucil Aminopeptidase/química , Leucil Aminopeptidase/isolamento & purificação , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/isolamento & purificação , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
20.
Nat Commun ; 11(1): 5783, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188197

RESUMO

Detecting ligand-protein interactions in living cells is a fundamental challenge in molecular biology and drug research. Proteome-wide profiling of thermal stability as a function of ligand concentration promises to tackle this challenge. However, current data analysis strategies use preset thresholds that can lead to suboptimal sensitivity/specificity tradeoffs and limited comparability across datasets. Here, we present a method based on statistical hypothesis testing on curves, which provides control of the false discovery rate. We apply it to several datasets probing epigenetic drugs and a metabolite. This leads us to detect off-target drug engagement, including the finding that the HDAC8 inhibitor PCI-34051 and its analog BRD-3811 bind to and inhibit leucine aminopeptidase 3. An implementation is available as an R package from Bioconductor ( https://bioconductor.org/packages/TPP2D ). We hope that our method will facilitate prioritizing targets from thermal profiling experiments.


Assuntos
Biologia Computacional/métodos , Proteoma/metabolismo , Proteômica , Temperatura , Trifosfato de Adenosina/metabolismo , Bases de Dados de Proteínas , Guanosina Trifosfato/metabolismo , Células Hep G2 , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Indóis/química , Indóis/farmacologia , Leucil Aminopeptidase/metabolismo , Ligantes , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Ligação Proteica , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...